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The effect of faults on electronic systems has been studied since
the 1970s when it was noticed that radioactive particles caused er-
rors in chips. This led to further research on the effect of charged
particles on silicon, motivated by the aerospace industry, which was
becoming concerned about the effect of faults in airborne electronic
systems. Since then various mechanisms for fault creation and prop-
agation have been discovered and researched. This paper covers the
various methods that can be used to induce faults in semiconduc-
tors and exploit such errors maliciously. Several examples of attacks
stemming from the exploiting of faults are explained. Finally a se-
ries of countermeasures to thwart these attacks are described.
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I. INTRODUCTION

One of the first examples of faults being injected into a
chip was accidental. It was noticed that radioactive particles
produced by elements naturally present in packaging ma-
terial [1] caused faults in chips. Specifically, uranium-235,
uranium-238, and thorium-230 residues present in the pack-
aging decay to lead-206 while releasing particles. These
particles create a charge in sensitive chip areas, causing bits
to flip. While these elements were only present in two or three
parts per million, this concentration was sufficient to affect
chip behavior. Subsequent research included studying and
simulating the effects of cosmic rays on semiconductors [2].
Cosmic rays are very weak at ground level due to the earth’s
atmosphere, but their effect becomes more pronounced in the
upper atmosphere and outer space. This problem is further
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compounded by the fact that the more RAM a computer has,
the higher the chance of a fault occurring. This has provoked
a great deal of research by organizations such as NASA and
Boeing. Most of the work on fault resistance was motivated
by this vulnerability to charged particles. Considerable engi-
neering endeavors were devoted to the “hardening” of elec-
tronic devices designed to operate in harsh environments.
This has mainly been done using simulators to model circuits
and study the effect of randomly induced faults. Various fault
induction methods have since been discovered but all have
in common similar effects on chips. One such example is the
use of a laser to imitate the effect of charged particles [3].
The different faults that can be produced have been charac-
terized to enable the design of suitable protections. The first
attack that used a fault to derive secret information [4] tar-
geted the RSA public-key cryptosystem. Basically, by intro-
ducing a fault into one of the primes, the modulus can be
exposed and as a result compromise the RSA system. This
led to similar attacks on other cryptographic algorithms. The
countermeasures that can be used to thwart fault attacks had
already been largely defined and successfully deployed.

This survey is organized as follows. In Section II the var-
ious methods of fault injection and their effects are described.
We then turn to theoretical (Section III) and practical (Sec-
tion IV) attacks. Finally, countermeasures are described in
Section V.

II. METHODS OF FAULT INJECTION

The most common fault injection techniques are as
follows.

1) Variations in supply voltage during execution may
cause a processor to misinterpret or skip instructions.
This method is widely researched and practiced behind
closed doors by the smart-card industry but does not
often appear in the open literature.

2) Variations in the external clock may cause data misread
(the circuit tries to read a value from the data bus before
the memory had time to latch out the asked value) or an
instruction miss (the circuit starts executing instruction
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Fig. 1. Laser fault injection equipment.

before the microprocessor finished executing in-
struction ).

3) Temperature: circuit manufacturers define upper and
lower temperature thresholds within which their cir-
cuits will function correctly. The goal here is to vary
temperature using an alcoholic cooler until the chip
exceeds the threshold’s bounds. When conducting
temperature attacks on smart cards (never documented
in the open literature to the authors’ knowledge) two
effects can be obtained: the random modification of
RAM cells due to heating and the exploitation of the
fact that read and write temperature thresholds do not
coincide in most nonvolatile memories (NVMs). By
tuning the chip’s temperature to a value where write op-
erations work but reads do not or the other way around
a number of attacks can be mounted (components are
classified into three temperature vulnerability classes
the description of which is beyond the scope of this
survey).

4) White light: All electric circuits are sensitive to light due
to photoelectric effects. The current induced by photons
can be used to induce faults if a circuit is exposed to
intense light for a brief period. This can be used as an
inexpensive means of fault induction [5].

5) Laser can reproduce a wide variety of faults and can be
used to simulate [3] faults induced by particle accelera-
tors [6], [7]. The effect produced is similar to white light
but the advantage of a laser over white light is direction-
ality that allows to precisely target a small circuit area.
Examples of laser fault injection equipment is shown in
Figs. 1 and 2.

6) X-rays and ion beams can also used as fault sources
(although less common). These have the advantage of
allowing the implementation of fault attacks without
necessarily depackaging the chip.

A. The Different Types of Faults

Electronic circuits can be subject to two classes of faults:
provisional (transient) and destructive (permanent) faults. In
a provisional fault, silicon is locally ionized so as to induce
a current that, when strong enough, is falsely interpreted by

Fig. 2. Laser fault injection equipment (inner view).

the circuit as an internal signal. As ionization ceases so does
the induced current (and the resulting faulty signal) and the
chip recovers its normal behavior. By opposition, destructive
faults, created by purposely inflicted defects to the chip’s
structure, have a permanent effect. Once inflicted, such de-
structions will affect the chip’s behavior permanently.

1) Provisional Faults (Taxonomy): Provisional faults
have reversible effects and the circuit will recover its orig-
inal behavior after the system is reset or when the fault’s
stimulus ceases.

• Single-event upsets (SEUs) are flips in a cell’s logical
state to a complementary state. The transition can be
temporary, if the fault is produced in a dynamic system,
or permanent if it appears in a static system. SEU was
first noticed during a space mission in 1975 [8], [9]
and stimulated research into the mechanisms by which
faults could be created in chips. SEUs can also manifest
themselves as a variation in an analogue signal such as
the supply voltage or the clock signal.

• Multiple-event upsets (MEUs) are a generalization of
SEUs. The fault consists of several SEUs occurring si-
multaneously. A high integration density is a risk factor
that can provide conditions favorable to the genesis of
MEUs.

• Dose rate faults [10] are due to several particles whose
individual effect is negligible but whose cumulative ef-
fect generates a sufficient disturbance for a fault to ap-
pear.

2) Destructive Faults (Taxonomy):
• Single-event burnout faults (SEBs) are due to a parasitic

thyristor being formed in the MOS power transistors
[11], [12]. This can cause thermal runaway in the circuit
causing its destruction.

• Single-event snap back faults (SESs) [13] are due to the
self-sustained current by the parasitic bipolar transistor
in MOS transistor channel N. This type of fault is not
likely to occur in devices with a low supply voltage.
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Fig. 3. Single event latch-up—parasitic transistors T1 and T2.

• Single-event latch-up faults (SELs) [6], [14]depicted in
Fig. 3, are propagated in an electronic circuit by the
creation of a self-sustained current with the releasing
of PNPN parasitic bipolar transistors in CMOS tech-
nology. This can potentially destroy the circuit.

• Total dose rate faults [15] are due to a progressive
degradation of the electronic circuit subsequent to
exposure to an environment that can cause defects in
the circuit [16].

When using fault injection as an attack strategy provi-
sional faults are the method of choice. These allow for faults
under numerous experimental conditions to be attempted
until the desired effect is achieved. As a side-bonus the
system remains functional after the attack’s completion. By
opposition, a destructive fault would (usually) render the
target unusable and will necessitate the manufacturing of a
clone.

III. FAULT ATTACKS IN THEORY

The first academic fault attack paper [4] proposed a
number of methods for attacking public key algorithms.
One attack focused on an implementation of RSA using
the Chinese Remainder Theorem (CRT). The attack is very
simple as it only requires one fault to be inserted in order
to factor the RSA modulus. Basically the attack works as
follows.

A. Fault Attack on RSA Signature With Chinese Reminder
Theorem

Let , where and are two large prime num-
bers. Let be the message to be signed, the private
key and the RSA signature. We denote by and the pre-
computed values required for use in the CRT, such that

and define

Using repeated squaring calculate

The RSA signature is then obtained by the linear com-
bination

The attack is based on being able to obtain two signatures
of the same message, where one signature is correct and the
other faulty. By “faulty” we mean that a fault injected during
the computation corrupted either the computation of or .

Let be the faulty signa-
ture (we arbitrarily assume that the error occurred during the
computation of but the attack works just as well when
is corrupted). Subtraction yields

Hence, as and it follows
that (but ) meaning that
is a multiple of (but not of ). Hence, a GCD calculation
gives the secret factors of :
and .

In summary, all that is required to break RSA is one correct
signature and one faulty one. This attack will be successful
regardless of the type or number of faults injected during the
process provided that all faults affect the computation of
or (mutually exclusive or!) .

This attack was extended in [34] to show that it is not
necessary to generate a correct signature to achieve this at-
tack. The faulty signature can be compared to the message,
as , where is the public
verification exponent.

Although initially theoretical, this attack (implemented
in [17]) stimulated the genesis of a variety of fault attacks
against a wide gamut of cryptographic algorithms. The
following subsections describe some more of these attacks.
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B. Fault Attack on RSA Signature Without CRT

Suppose that one bit in the binary representation of the se-
cret key flips from from one to zero or vice versa, and that
this faulty bit position is randomly located. An attacker ar-
bitrarily chooses a plaintext and computes the signature
. While the signature is being generated, the attacker gen-

erates a fault such that the one bit of the private exponent is
changed resulting in a faulty signature . Assuming that the
th bit flips to its complement, then the division of the gen-

erated by , as described in [18], gives

if th bit of ,
if th bit of .

In [35] it was shown that this can be optimized by raising
the formula to the power of the public exponent , giving

if th bit of ,
if th bit of

where it is not necessary to know the correct signature but
just the signature with a fault.

An attacker can compare to all the possible signa-
tures that can be created by one bit fault errors in . This can
be done quickly as only signatures are possible. This
process is repeated until enough information is obtained on

to derive all the key elements.
It has been proposed that this attack can be extended to

when more than one bit is changed [18]. However, this at-
tack works if and only if one bit is changed. If, for example,
two bits ( and ) are changed, then the signature will be in-
terpreted using the following relationship:

The depending on how the bit has been changed.
Another fault on two bits ( and ) will yield the same value
for where:

A variant of this attack can be applied to discrete loga-
rithm based public key cryptosystems such as DSA, this is
described in [18].

C. Fault Attacks on Key Transfer or NVM

In this scenario [19], a fault is injected during the transfer
of secret data from one memory component to another. Al-
though the attack is applicable to any algorithm, let us as-
sume that a DES key is being transferred from EEPROM to

Table 1
The Biham–Shamir Attack

RAM in a smart card. If we change the value of parts of the
key to some fixed value (for example, one byte at a time), it
becomes possible to derive the secret key.

We DES-encrypt a message to obtain a faultless ci-
phertext . Then, during the key transfer from EEPROM
to RAM, one key byte is changed to a fixed known value (00
in our example). The resulting is recorded and the process
is repeated by forcing two bytes to a fixed value, then three
bytes, and so on. This continues until the whole key but one
byte has been set, byte by byte, to the fixed value.

This procedure shown in Table 1, where represents the
ciphertext of an unknown key with bytes set to a fixed value.
Once this data has been collected, it can be used to derive the
DES key.

Let represent the original DES key with bytes re-
placed with known values. To find the 128 different pos-
sible values for the first byte of the DES key are tried until
one produces the ciphertext .1 After this can be found
by searching through the 128 different possible, values for
the second byte, as the first byte will be known. Finding the
entire key will require a search through a key space of 1024
different keys. This attack can also be used when unknown
data is manipulated by an known algorithm. The prerequisite
for doing so is the ability to rekey the device (running the un-
known algorithm) with keys of our choosing. In which case
the exhaustive search phase can be performed on the attacked
device itself.

Historical note: An attack similar to [19] was discovered
and documented (but never published) in 1994. The code was
that of a smart-card operating system where a special file con-
tained DES keys saved in records. This OS featured two com-
mands: erase , a command that erases the th key record
and encrypt , a command that outputs the ciphertext
of the message using the key contained in the th record.
While invisible for the user, the OS was using the conven-
tion that all-zero keys are free records (an encrypt com-
mand on a zero (erased) record would return an error). The
attack here was exploiting the fact that EEPROM could only
be erased by 32-block units. In other words, upon an erase,
the OS would erase twice four bytes. The attack consisted
of encrypting a message with an unknown key and then in-
structing the OS to erase this key but cutting power just after
the first 32-bit block’s deletion. The card will then contain a

1Although a byte is changed, only 128 different values are possible, as the
least significant bit is a parity bit.
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Fig. 4. Simplified DES last round model.

56-bit key which rightmost half is zeroed (which is not in-
terpreted by the OS as an empty key record!). An encryption
with this key followed by two 2 exhaustive search cam-
paigns would have eventually revealed the key.

Since that date, OSs associate a security bit to each key.
When a user instructs to delete a key, the bit is erased first,
thereby recording the information that the key cannot be used
anymore for cryptographic operations. Only then will the OS
undertake the task of erasing the key’s actual bits. Upon reset,
the OS ascertains that all keys contain zero bytes if any
nonzero keys are found, the OS simply resumes the
deletion of their bits.

D. Fault Attacks on DES

DES is a 16-round secret key algorithm based on a Feistel
structure. This attack targets DES’ 15th round. We use a sim-
plified description of the last round (Fig. 4) to explain what
happens when the 15th round does not execute properly.2

The output of the last round can be expressed as:

If a fault occurs during the execution of the 15th round,
i.e., is changed into a faulty , then

If we XOR and , we get

This gives a relationship where only the value of the 16th
subkey is unknown; all the other variables being given
directly as an output of the DES. For each substitution table
used in the last DES round this relationship will be true. An

2In Fig. 4 bit permutations were removed, as these do not fundamentally
change theory although they somewhat complicate explanation.

exhaustive search of the 64 possible values that validate this
equation can be conducted for each of the six bits corre-
sponding to the input of each substitution table. This will give
approximately 2 different hypotheses for the last subkey
leading to a final exhaustive search through 2 DES keys to
find the whole key. In practice, it is simplest to conduct the
attack several times either at different positions in the 15th
round or with a varying message. When the lists of possible
hypotheses are generated the actual subkey will show up in
the intersection of all the sets of hypotheses. If the difference
between the two output values for a given substitution table
( and ) is zero, then all the possible values of for
that substitution table will be valid. This means that it is ad-
vantageous to induce a fault as early as possible in the 15th
round so that the effect of the fault spreads over as many dif-
ferent substitution tables in the 16th round as possible.

E. Other Fault Attacks—Further Reading

While the bibliography on the matter would be too vo-
luminous to overview exhaustively, the authors attract the
reader’s attention to a more powerful attack [20] applicable
to all secret key algorithms. Several authors have published
other fault attacks on DES [33] and other algorithms such as
AES [21], [22] and RC5 [23]. The details of these are beyond
the scope of this paper and are presented as further reading.

IV. SOME EXPERIMENTAL FAULT ATTACKS

In a glitch attack, the attacker deliberately generates a mal-
function that causes one or more flip-flops to transition into a
wrong state. The aim is usually to replace a single critical ma-
chine instruction with an almost arbitrary one. Glitches can
also aim to corrupt data values as information is transferred
between registers and memory [24]. There are three main
techniques for creating fairly reliable malfunctions that affect
only a very small number of machine cycles in smart-card
processors. These are clock signal transients, power supply
transients, and external electrical field transients. All three
were successfully experimentally implemented. Particularly
interesting instructions that an attacker might want to target
with glitches are conditional jumps or the test instructions
preceding them. They create a window of vulnerability in
the processing stages of many security applications that often
allow the attacker to bypass sophisticated cryptographic bar-
riers by simply preventing the execution of the code that
detects that an authentication attempt was unsuccessful. In-
struction glitches can also be used to extend the runtime of
loops—for instance, in serial port output routines—to see
more of the memory after output buffer, or reduce the run-
time of loops, thereby transforming an iterated block-cipher
into an easy to break single-round variant [24]. Clock-signal
glitches are currently the simplest and most practical ones.
They temporarily increase the clock frequency for one or
more half cycles, such that some flip-flops sample their input
before the new state has reached them. Power analysis was
used by this survey’s authors to monitor how far a program
has progressed and launch a fault as the power profile of
a specific instruction was recognized. This in turn can be
used to determine when, for example, a branch instruction
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Fig. 5. Instruction-only glitch attack.

Fig. 6. Instruction and data glitch attack.

is about to be taken. A more rapid clock cycle at this point (a
clock glitch) may provide insufficient time for the processor
to write the jump address to the program counter, thereby an-
nulling the branch operation [25]. A similar clock-glitch at-
tack is also presented in [23]. Because of the different number
of gate delays in various signal paths and the varying parame-
ters of the circuits on the chip, this affects only some signals,
and by varying the precise timing and duration of the glitch,
the CPU can be fooled to execute a number of completely
different, wrong instructions. These will vary from one in-
stance of the chip to another, but can be found by a system-
atic search using specialized hardware.

The following figures illustrate different effects that
glitches can have. In this experiment power was dropped
from to 0 V during a few nanoseconds. By carefully
playing with the glitch’s parameters (duration, falling edge,
amplitude etc.) two types of behavior were obtained.

• Under a first set of conditions (Fig. 5), the processor just
skipped a number of instructions and resumed normal
execution several microseconds after the glitch. This
fault allows the selective execution of instructions in a
program.

• Under a second set of conditions, not only does the pro-
cessor skip instructions, but the value of data manip-
ulated by the processor is also modified in a precise
manner. This is visually reflected in the power curves
of Fig. 6.

It should be noted that a third set of conditions was tested
in this experiment. Although the results are not shown here,

Fig. 7. Glitch fault attack board with CLIO reader.

Fig. 8. A modified CLIO reader.

the outcome was that the value of data could be corrupted
while the interpretation of instructions was left unchanged.

Figs. 7 and 8 show glitch injection electronics used in
mounting these attacks. The board shown in Fig. 7 was de-
veloped to perform glitch attacks. The board accepts a signal
from a CLIO reader instructing the board to apply a lower
voltage to the for the duration of that signal. The levels
of voltage that are applied during the glitch are controlled
via potentiometers configured with a screwdriver. A similar
setup was used to modify the clock sent to the card for short
periods of time. This type of setup is very inexpensive but
requires that all the possible glitch configurations be tested
by hand.

Fig. 8 shows a modified CLIO reader that can be used to
inject a glitch at a specific point during a command. This
setup can be configured via the network to allow for a large
number of glitch configurations to be tested when searching
for vulnerabilities in new chips. This is more expensive than
building a simple electronic board but can be automated so
that more glitch configurations can be tested.

Glitch attacks have been reported against a number of
cryptographic systems. We will describe here a few such
attacks in further detail.
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Fig. 9. EEPROM.

A. Glitch Attack on RSA

The GCD attack presented in Section III was implemented
by [17] and others. We also refer the reader to [18] and [26]
which report clock-glitch attacks against RSA and DES.

B. Glitch Attack on DES

When we can cause an instruction of our choice to fail, then
there are several fairly straightforward ways to attack DES.
We can remove one of the 8-bit XOR operations that are used
to combine the round keys with the inputs to the S-boxes from
the last two rounds of the algorithm, and repeat this for each of
these key bytes in turn. The erroneous ciphertext outputs that
we receive as a result of this will each differ from the genuine
ciphertext in the output of usually two, and sometimes three,
S-boxes. Using the techniques of differential cryptanalysis,
we obtain about five bits of information about the eight key
bits that were not XORed as a result of the induced fault. So, for
example, six ciphertexts with faulty last rounds should leak
about 30 key bits, leaving an easy brute-force search [23]. An
even faster attack brutally reduces the number of DES rounds
to one or two by corrupting the appropriate loop variable or
conditional jump. As a conclusion, unprotected DES can be
compromised in a variety of ways with somewhere between
one and ten faulty ciphertexts.

C. Glitch Attack on EEPROM

EEPROM stores information as charges in the gate insu-
lator of a MOSFET; charge is stored on the floating gate of
a MOS transistor and the control gate is used to program the
transistor, as shown in Fig. 9. EEPROM transfers electrons
by Fowler–Nordheim tunnelling and program/erase opera-
tions are carried out by electrons tunnelling through the thin
oxide. Control gate voltage is high for programming while
for erasure the control gate is grounded and the drain voltage
is raised. To read information from a cell, the cell’s static
voltage is compared to a reference detection voltage
(usually ). Consequently, if programming is
done under the lowest tolerable voltage, a lesser amount of
particles will be forced into the cell. Then, if during reading

is increased to the highest value tolerated by the circuit
is artificially boosted and, hence, data will be read as

zero regardless its actual value. To attack an byte key one
can simply subject the circuit to power glitches to ob-

tain the encryption of a known plaintext under a vulnerable
key of the form

The attacker will then move the glitch’s position to suc-
cessively scan the entire key. This attack was implemented
in the late 1990s.

D. Analogous Laser Attack on a Data Bus

In a specific smart card chip, a laser impact on the data bus
during information transfer has the effect of reading the value
255 (0xFF) regardless the transferred information’s actual
value. The attack described in the previous subsection could
hence be directly readapted in a laser laboratory.

E. The Java Sandbox

The Java sandbox is an environment in which applets are
run without direct access to the computer’s resources, the
idea being that an applet need not be trusted as it is incapable
of running malicious code. The most common example of
Java programs being used is on the Internet, where an applet
is downloaded and executed on a PC to achieve a given effect
on the webpage being observed. A relatively recent paper
[27] describes a fault attack on a PC forcing the Java Virtual
Machine to execute arbitrary code. This was done by using a
spotlight to heat up the PC’s RAM to the point where a fault
(in this case a bit flip) occurs. In this case a special applet was
loaded into the computer’s memory and the RAM heated up
to the point where some bits would change their value. The
expected fault was that the address of a function called by
the applet would have one bit changed, so that the address
called was , where (the computer’s word
size). The programmer arranges to have a function present
at that address that will return a variable of a type that is
not expected by the calling function, for example an integer
to a pointer. This can then be used to read/write to arbitrary
addresses in the computers memory. One of the possible uses
of such a fault would be to change fields in the Java runtime
system’s security manager to grant the applet illegal rights.

V. COUNTERMEASURES

Since the identification of faults as a problem in electronic
systems several hardening methods were deployed. These so-
lutions help circuits to avoid, detect, and/or correct faults.
Hardware and software countermeasures will be overviewed
separately for the sake of clarity.

A. Hardware Countermeasures

Hardware protections are implemented by the chip man-
ufacturer and can be further subdivided into two categories:
active and passive protections.

1) Active Protections:
• Light detectors detect changes in the gradient of light.
• Supply voltage detectors react to abrupt variations in

the applied potential and continuously ascertain that
voltage is within the circuit’s tolerance thresholds.
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Fig. 10. Simple duplication with comparison.

Fig. 11. Multiple duplication with comparison.

• Frequency detectors impose an interval of operation
outside which the electronic circuit will reset itself.

• Active shields are metal meshes that cover the entire
chip and has data passing continuously in them. If there
is a disconnection or modification of this mesh, the chip
will not operate anymore. This is primarily a counter-
measure against probing, although it helps protecting
against fault injection, as it makes the location of spe-
cific blocks in a circuit harder.

• Hardware redundancy:
1) Simple duplication with comparison (SDC), illus-

trated in Fig. 10, is the duplication of hardware
blocks followed by a test by a comparator. When
the two blocks’ results do not match, an alert signal
is transmitted to a decision block. Two types of
reaction can be implemented: a hardware reset or
the activation of an interruption that triggers dedi-
cated countermeasures. SDC protects against single
focused errors and only permits their detection. A
feedback signal is usually triggered to stop all out-
going data flows.

2) Multiple duplication with comparison (MDC), il-
lustrated in Fig. 11, is where each hardware block
is duplicated at least thrice. The comparator de-
tects any mismatch between results and transmits
the alert signal to the decision block. As previously,
two types of reaction can be implemented, a hard-
ware reset or the activation of an interruption, the

Fig. 12. Simple duplication with complementary redundancy.

Fig. 13. Dynamic duplication.

difference with SDC being the possibility to correct
the fault through a majority vote and correct the out-
going signal.

3) Simple duplication with complementary redun-
dancy (SDCR), illustrated in Fig. 12, is based on
the same principles as SDC but the two blocks
store complemented data. When the result of the
two blocks match, the comparison block transmits
an alert to the system that triggers a hardware reset
or an interrupt. SDCR protects against multiple
focused errors, since it is difficult to inject two
different errors with complementary effects, but
(just as SDC) SDCR only permits error detection.

4) Dynamic duplication, illustrated in Fig. 13, consists
of multiple redundancies with a decision module,
commanding a data switch upon fault detection. The
vote block is a switch, which transmits the correct
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Fig. 14. Hybrid duplication.

Fig. 15. Simple time redundancy with comparison.

result as instructed by the comparator. Corrupted
blocks are disabled and their results discarded. This
type of implementation permits detection and sub-
sequent reaction to the detected error [28].

5) Hybrid duplication, illustrated in Fig. 14, is a
combination of multiple duplications with comple-
mentary redundancy and dynamic duplication. This
protects against single and multiple focused faults,
as it is very difficult to inject multiple faults with
complementary effects.

• Protection using time redundancy:
1) Simple time redundancy with comparison

(STRC), illustrated in Fig. 15, consists of pro-
cessing each operation twice and comparing
results [29]. This protects against single and
multiple time synchronized errors, but is only

capable of detecting faults. Reaction is limited
to the discarding of the corrupted results.

2) Multiple time redundancy with comparison
(Fig. 16) is based on the principle used by
STRC, but the result is processed more than
twice. This detects, reacts, and possibly corrects
single and multiple faults.

3) Recomputing with swapped operands (Fig. 17)
consists of recomputing results with the
operands’ little endian and big endian bits
swapped. The result is reswapped and compared
to detect potential faults. This type of protec-
tion has the advantage of desynchronizing two
different processes and makes fault attacks very
difficult. This countermeasure protects against
single and multiple time synchronized errors.
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Fig. 16. Multiple time redundancy with comparison.

Fig. 17. Recomputing with swapped operand.

Fig. 18. Recomputing with shifted operand.

4) Recomputing with shifted operands (Fig. 18)
[30]: operations are recomputed by shifting the
operands by a given number of bits. The result
is shifted backward and compared to the original
one.

5) Recomputing with duplication with comparison
(Fig. 19) is a combination of time redundancy
and hardware redundancy. This protects against
single, multiple, and time-synchronized faults,
but the time penalty and the increase in block size
limit this countermeasure’s use.

• Protection by redundancy mechanisms such as Ham-
ming codes [31], hardwired checksums, and error cor-
rection codes are also used to avoid or detect faults [32],
the typical example being checksums attached to each
machine word in RAM or EEPROM to ensure integrity.

2) Passive Protections: The second class of hardware pro-
tection mechanisms consists of passive protections that in-
crease the difficulty of successfully attacking a device. These
protections can be self-activated or managed by the device’s
programmer.

• Mechanisms that introduce dummy random cycles
during code processing.

• Bus and memory encryption. Let be a hardwired keyed
permutation and a simple hardwired block-cipher.
Upon power-on, the chip generates an ephemeral key .
When the microprocessor wishes to write the value
at RAM address , the system stores at ad-
dress . When the microprocessor requires the con-
tents of address , the system recomputes , fetches

from address , decrypts , and
hands to the microprocessor. This makes laser or
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Fig. 19. Recomputing with duplication with comparison.

Fig. 20. Unstable internal frequency generation reflected in power con-
sumption.

glitch targeting of a specific memory cell useless as suc-
cessive computations with identical data use different
memory cells.

• Passive shield: a full metal layer covers some sensitive
chip parts, which makes light or electromagnetic beam
attacks more difficult as the shield needs to be removed
before the attack can proceed. This also allows to con-
tain information leakage through electromagnetic radi-
ations (i.e., thwart some side-channel attacks).

• Unstable internal frequency generators protect against
attacks that need to be synchronized with a certain
event, as events occur at different moments in different
executions. An example of such a deterrent is depicted
in Fig. 20.

B. Software Countermeasures

Software countermeasures are implemented when hard-
ware countermeasures are insufficient or as cautious pro-
tection against future attack techniques that might defeat
present-generation hardware countermeasures. The advan-
tage of software countermeasures is that they do not increase
the hardware block size, although they do impact the pro-
tected functions’ execution time.

• Checksums can be implemented in software. This is
often complementary to hardware checksums, as soft-
ware CRCs can be applied to buffers of data (sometimes
fragmented over various physical addresses) rather than
machine words.

• Execution randomization: If the order in which oper-
ations in an algorithm are executed is randomized, it
becomes difficult to predict what the machine is doing
at any given cycle. For most fault attacks, this counter-
measure will only slow down a determined adversary,
as eventually a fault will hit the desired instruction. This
will, however, thwart attacks that require faults in spe-
cific places or in a specific order, such as the transferring
of secret data attack described previously.

• Variable redundancy is nothing but SDC in software.
• Execution redundancy is the repeating of algorithms

and comparing the results to verify that the correct re-
sult is generated. As SDCR, redundancy is more secure
if the second calculation is different than the first (for
example, its inverse3) so that two identical faults cannot
be used at different times.

• Ratification counters and baits: baits are small
( 10 byte) code fragments that perform an opera-
tion and test its result. A typical bait writes, reads and
compares data, performs XORs, additions, multiplica-
tions, and other operations whose results can be easily
checked. When a bait detects an error, it increments an
NVM counter, and when this counter exceeds a toler-
ance limit (usually three), the card ceased to function.

In theory, all data redundancy method used in hardware
can be implemented in software. The problem then becomes
execution time rather than block size. As some of the pro-

3Encrypt-decrypt, sign-verify, etc.
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posed hardware designs become extremely time consuming
when imitated by software.

VI. CONCLUSION

Various methods for creating faults were presented.
Practical applications of these attacks were presented. These
applications included attacks on keys and symmetric and
asymmetric cryptosystems. Finally, hardware and software
countermeasures were overviewed. Unfortunately, these
countermeasures never come for free and impact the cost
of the system being developed. Also, the resulting system
will be slower and may feature an increased block size.
There will always be a tradeoff between cost, efficiency,
and security, and it will be a judgment call by designers,
developers, and users to choose which of these requirements
best suit their needs. There is still much work to be done
in this area with the ultimate goal being an optimal balance
between security, efficiency and cost.

The attacks described were implemented on chips which
did not contain hardware countermeasures specifically de-
signed to prevent fault attacks. They were part of an effort to
develop suitable countermeasures knowing that the hardware
was vulnerable to fault injection. This is due to the delay be-
tween such countermeasures being implemented and actually
appearing as silicon that can be used for a product. There are
currently European projects underway, such as [36], which
aim to characterize the effects of fault injection and evaluate
the efficieny of current hardware countermeasures.
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